Flight Delay Classification

PLAN

Business Problem:

We are assisting the Salt Lake City airport in predicting if certain weather conditions are
likely to delay a flight. While it can be hard to predict storms, we have data on atmospheric
conditions like air pressure, wind speed, and visibility that affect whether or not a flight is
cleared for on-time departure.

For our business problem, we have assymetric loss. Delaying a flight is less costly than what
could happen if a plane departed in unsafe weather conditions. For this analysis, we will say
that delaying a flight that should have been cleared will lead to 50,000 dollars of costs from
disrupting air traffic flow, while having an on-time flight that should have been delayed will
lead to 500,000 dollars of costs from customer lawsuits over endangerment.

Ideal Dataset:

Since we are looking at weather information on the decision to delay a flight, we would want
as many metrics of weather as possible. Our data has major components of weather:
temperature, air pressure, wind speed, precipitation, and visibility. One shortcoming with our
dataset is that delay information is split up into time intervals depending on how much a
delay reason contributed to the total delay length. However, our data is fairly inconsistent
with these time allotments. Ideally, we would want to only include delays that were caused
by weather, but this is not feasible with our dataset.

BUILD

Loss Function:

from sklearn.metrics import confusion_matrix
import numpy as np

def flight loss(false_positives, false_negatives):
endanger = false_negatives * 500000

wasted = false_positives * 500000
return endanger + wasted

Above is our piecewise loss function as described in the business problem. The 50,000 is our
cost for false positives (delaying a flight that could have gone on-time), and the 500,000 is
our cost for false negatives (letting a flight go on-time that should have been delayed). The
"a" is the action we take and the "theta" is the state of the world determined by our cutoff
value. When our action is "more than" the state of the world, we have a false positive and are
charged 500,000, and when our action is “less than" the state of the world, we have a false
negative and are charged 50,000. When our actions and the state of the world are the same,

there are no costs.

Simulate Data:

#Lets simulate some data

import numpy as np

import polars as pl

import seaborn.objects as so

import statsmodels.api as sm

import statsmodels.formula.api as smf
import bambi as bmb

import arviz as az

Set randomization seed
rng = np.random.default_rng(42)

Specify a function to simulate data

def sim_data(n, beta_©, beta_temp, beta_precipitation,
beta_visibility, beta_airpress):
Simulate temperature using a normal distribution
temp = rng.normal(54, 5, size=n)
Simulate precipitation using a binomial distribution
precipitation = rng.binomial(1l, ©.5, size=n)
Simulate visibility using a binomial distribution
visibility = rng.binomial(1l, 0.7, size=n)
Simulate air pressure using a binomial distribution
airpress = rng.normal(54, 5, size=n)

Simulate the probability of a flight being delayed
prob_y = (
np.exp(beta_© + beta_temp * temp + beta_precipitation *
precipitation + beta_visibility *
visibility + beta_airpress * airpress) /
(1 + np.exp(beta_0 + beta_temp * temp + beta_precipitation
* precipitation + beta_visibility
* visibility + beta_airpress * airpress))

)

Use prob_y to simulate the qualifed outcome variable
delayed = rng.binomial(1l, prob_y, size=n)

Return the output

return delayed, temp, precipitation, visibility, airpress

Call the function and save as an array

data_arr = sim_data(n = 500, beta_© = 0.10, beta_temp = 0.05,
beta_precipitation = -.25,
beta_visibility = ©.09, beta_airpress = 0.08)

Convert to a dataframe
data_df = pl.DataFrame(data_arr, schema = ['delayed', 'temp', 'precipitation’,
'visibility', ‘'airpress'])

fr_fit = smf.glm(
'delayed ~ temp + precipitation + visibility + airpress’',
data = data_df.to_pandas(),
family = sm.families.Binomial()

). fit()

print(fr_fit.summary())

Generalized Linear Model Regression Results

Dep. Variable: delayed No. Observations: 500
Model: GLM Df Residuals: 495
Model Family: Binomial Df Model: 4
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -5.9458
Date: Mon, ©8 Dec 2025 Deviance: 11.892
Time: 20:08:04 Pearson chi2: 141.
No. Iterations: 25 Pseudo R-squ. (CS): 0.005058
Covariance Type: nonrobust

coef std err z P>|z]| [0.025 0.975]
Intercept 44,9995 3.3e+04 0.001 0.999 -6.47e+04 6.48e+04
temp -0.0742 0.223 -0.333 0.739 -0.510 0.362
precipitation -20.8640 2.07e+04 -0.001 0.999 -4.06e+04 4.06e+04
visibility -20.3183 2.57e+04 -0.001 0.999 -5.05e+04 5.04e+04
airpress 0.1047 0.204 0.513 0.608 -0.295 0.505

To check our ability to run a model, we simulated some data and fit it to a logistic regression
model. Since we were able to recover all the parameters, we assume that if our simulated
data matches parts of the ideal dataset we would be able to run a model on the actual data
properly.

EXPLORE:

The dataset we have is merged from two sources: data for each flight came from the Bureau
of Transportation Statistics of the United States, and the weather data came from the lowa
Environmental Mesonet at lowa State University, which archives Automated Surface
Observing System (ASOS) data from airports. Our dataset only contains observations from
the Salt Lake City airport. It spans from 1/1/2021 to 9/30/2023.

#Import SLC.csv as a pandas dataframe
import pandas as pd
df = pd.read_csv('SLC.csv")

#Map Delayed and Cancelled 'TRUE' and 'FALSE' to 1 and ©
df['Cancelled'] = df['Cancelled'].map({True: 1, False: 0})
df['Delayed'] = df['Delayed'].map({True: 1, False: 0})

#Create a donut chart with the proportion of delays
and on-time flights
import matplotlib.pyplot as plt

Create a column for flight status
df['FlightStatus'] = 'Normal’
df.loc[df['Delayed'] == 1, 'FlightStatus'] = 'Delayed’

Get the counts for each status
status_counts = df['FlightStatus'].value_counts()

Create the donut chart using Matplotlib
fig, ax = plt.subplots(figsize=(6, 6))
wedges, texts, autotexts = ax.pie(
status_counts.values,
labels=status_counts.index,
autopct="%1.1f%%",
startangle=90,
counterclock=False
)
Draw a white circle in the center to create a donut
centre_circle = plt.Circle((@, @), 0.70, fc='white")
fig.gca().add_artist(centre_circle)
ax.set_title("Proportion of Flights Delayed vs. Normal")
ax.axis('equal')
plt.tight_layout()
plt.show()

In [453..

Proportion of Flights Delayed vs. Normal

This first chart shows the percentages of flights that leave on time or are delayed. We see
that roughly one-third of flights are delayed and two-thirds of flights leave on-time. Our
model needs to obtain an accuracy of 66.2% or more to beat a random guess using these
percentages.

import matplotlib.pyplot as plt
import seaborn as sns

Identify columns that end with 'Delay’
delay columns = [col for col in df.columns if col.endswith('Delay')]

Sum the values for each identified column
delay sums = df[delay_columns].sum()

Convert the sums to a DataFrame for plotting
delay sums_df = delay_sums.reset_index()

delay sums_df.columns = ['DelayType', 'TotalDelay']

Create a bar chart with Seaborn/Matplotlib

plt.figure(figsize=(10, 6))

sns.barplot(data=delay _sums_df, x='DelayType', y='TotalDelay', color='steelblue"')
plt.title('Total Delay Minutes by Type')

plt.xlabel('Type of Delay')

plt.ylabel('Total Delay (Minutes)')

plt.xticks(rotation=45, ha="right")

plt.tight_layout()

plt.show()

1e6 Total Delay Minutes by Type

Total Delay (Minutes)

Type of Delay

The second chart shows us how much delay time is attributed to certain causes. We see that
security concerns contribute very little to delay time, while carriers and late aircraft
contribute most to the delay time. Relative to these causes, local weather plays a small role
in delay time.

In [454.. import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(10, 6))

sns.scatterplot(data=df, x='Wind_Speed', y='Wind _Gust', alpha=0.5)
plt.title('Scatterplot of Wind Speed vs. Wind Gust')
plt.xlabel('Wind Speed")

plt.ylabel('Wind Gust")

plt.grid(True)

plt.show()

Scatterplot of Wind Speed vs. Wind Gust

60 1

1SNO puIm

Sea Level Pressure')

Wind Speed
J

0.5)

plt.title('Scatterplot of Altimeter Pressure vs.

plt.xlabel('Altimeter Pressure')

'Altimeter Pressure’

10
df, x

(10, 6))

sns.scatterplot(data

'Sea_Level Pressure', alpha

y

plt.ylabel('Sea Level Pressure')

plt.grid(True)

import matplotlib.pyplot as plt
plt.show()

import seaborn as sns
plt.figure(figsize

Sea Level Pressure

Scatterplot of Altimeter Pressure vs. Sea Level Pressure

1040 .
1030
1020
) (OIIIND (D) IS KOS ID HISNSN
1010
1000 - = 'ﬁ
JP
] a'l.ﬁ%
. "S e
e o o L
990 - sty & ¢
o "
* 9
L}
T T T T T T
990 1000 1010 1020 1030 1040

Altimeter Pressure

These two scatterplots show the only positive correlations that we could find in our dataset.
An increase of wind speed is correlated with an increase in wind gust, and an increase of

altimeter pressure is correlated with an increase in sea level pressure.

import matplotlib.pyplot as plt
import seaborn as sns

Compute averages for all numeric columns grouped by Delayed
avg _df = df.groupby("Delayed").mean(numeric_only=True).reset_index()
avg df = avg_df.drop(columns=[#'Visibility', 'Altimeter Pressure’,
'Sea_Level_Pressure’,
"Cancelled’, 'DepDelayMinutes’,
'CarrierDelay', 'WeatherDelay',
'SecurityDelay', ‘'LateAircraftDelay’,
'NASDelay', 'Feels_Like_Temperature',
'Temperature', 'Wind_Speed', 'Wind_Gust',
'Precipitation’,
'Ice_Accretion_3hr'

D

Melt (reshape) to lLong format for easy plotting
avg melted = avg_df.melt(id_vars="Delayed",
var_name="Variable", value_name="Average")

Ensure Delayed is categorical so Seaborn groups correctly
avg _melted["Delayed"] = avg_melted["Delayed"].astype(str)

Seaborn grouped bar chart

plt.figure(figsize=(12, 6))

sns.barplot(data=avg_melted, x="Variable", y="Average", hue="Delayed")
plt.title("Average of Each Variable Grouped by Delay Status")

plt.xticks(rotation=45, ha='right")
plt.tight_layout()

plt.show()
Average of Each Variable Grouped by Delay Status
Delayed
14000 { mmm 0
1
12000 A
10000 -
L1
& 8000
]
z
6000
4000
2000
04
\)“0 SP _-\\6
2 2 R
K < &
& K
éo‘b B
F
Variable

In [457.. import matplotlib.pyplot as plt
import seaborn as sns

Compute averages for all numeric columns grouped by Delayed
avg_df = df.groupby("Delayed").mean(numeric_only=True).reset_index()
avg_df = avg_df.drop(columns=['Visibility', 'Altimeter_Pressure’,
'Sea_Level Pressure'’,
'Cancelled’, 'DepDelayMinutes’,
"CarrierDelay', 'WeatherDelay',
'SecurityDelay', ‘'LateAircraftDelay’,
"NASDelay', 'Feels_Like_Temperature',
#'Temperature', 'Wind_Speed', 'Wind Gust'’,
'Precipitation’,
'"Ice_Accretion_3hr'

D

Melt (reshape) to lLong format for easy plotting
avg_melted = avg_df.melt(id_vars="Delayed",
var_name="Variable", value_name="Average")

Ensure Delayed is categorical so Seaborn groups correctly
avg _melted["Delayed"] = avg_melted["Delayed"].astype(str)

Seaborn grouped bar chart

plt.figure(figsize=(12, 6))

sns.barplot(data=avg_melted, x="Variable", y="Average", hue="Delayed")
plt.title("Average of Each Variable Grouped by Delay Status™)
plt.xticks(rotation=45, ha="right")

plt.tight_layout()

plt.show()

In [458..

Average

Average of Each Variable Grouped by Delay Status

1000 1

800+

600 +

200+

Variable

import matplotlib.pyplot as plt
import seaborn as sns

Compute averages for all numeric columns grouped by Delayed

avg_ |
avg_ |

df
df

df.groupby("Delayed").mean(numeric_only=True).reset_index()
avg_df.drop(columns=["'Visibility', 'Altimeter_Pressure',
'Sea_Level_Pressure’,
'Cancelled’', 'DepDelayMinutes’,
'CarrierDelay', 'WeatherDelay',
'SecurityDelay', 'LateAircraftDelay',
'NASDelay', 'Feels_Like_Temperature',
'Temperature', 'Wind_Speed', 'Wind_Gust',
#'Precipitation’,
#'Ice_Accretion_3hr'

D

Melt (reshape) to lLong format for easy plotting

avg_

melted = avg df.melt(id_vars="Delayed",
var_name="Variable", value_name="Average")

Ensure Delayed is categorical so Seaborn groups correctly

avg_|

melted["Delayed"] = avg _melted["Delayed"].astype(str)

Seaborn grouped bar chart

plt.figure(figsize=(12, 6))

sns.barplot(data=avg_melted, x="Variable", y="Average", hue="Delayed")
plt.title("Average of Each Variable Grouped by Delay Status")
plt.xticks(rotation=45, ha='right")

plt.
plt.

tight_layout()
show()

Average

Average of Each Variable Grouped by Delay Status

1000 1

800+

600 +

200+

& &
° A
o
»
&R

)
<« &

Variable

These charts show the differences in average values for each variable, grouped by whether
the flight was delayed or not. Altimeter pressure and sea level pressure have little change in
averages between the delayed and on-time groups. However, we do see a lower average
temperature and visibility in the delayed flight set, as well as higher precipitation. From our
charts, there is also a small increase in wind speed and wind gust in the delayed dataset. To
fully understand the differences in means, we would need to use the standard deviation of
each variable and check for statistical significance.

Data Cleaning

#Remove all columns related to delay information besides the binary indicator
df = df.drop(columns=['DepDelayMinutes', 'CarrierDelay', 'WeatherDelay',
'SecurityDelay', 'LateAircraftDelay', 'NASDelay'])

#Remove other unnecessary columns
df = df.drop(columns=['Time', 'Dest', 'Carrier', 'Origin', 'Cancelled’,
"CancellationReason', 'Feels_Like_Temperature'])

Dropping redundant column that matches our column we want to predict
df = df.drop('FlightStatus', axis = 1)

Since we are only looking at delayed flights, we dropped all columns relating to flight
cancellations. We also dropped any delays that were not due to the weather before making
our mean comparison charts, as they would throw off our estimates based on weather
patterns.

Create a histogram for each quantitative variable to check for normality
import seaborn as sns
import matplotlib.pyplot as plt
quant_vars = ['Temperature', 'Altimeter_Pressure’,
'Sea_Level Pressure', 'Visibility"',

'Wind_Speed', 'Wind_Gust', 'Precipitation', 'Ice_Accretion_3hr']
plt.figure(figsize=(15, 4))
for var in quant_vars:

plt.figure(figsize=(6, 4))

sns.histplot(df[var], kde=True, bins=30, color='skyblue")

plt.title(f'Distribution of {var}')
plt.xlabel(var)
plt.ylabel('Frequency")

plt.show()

<Figure size 1500x400 with @ Axes>

Distribution of Temperature

30000 -

25000 A

20000 -

15000 A

Frequency

10000

5000 -

—

-

LU

20 40 60 80
Temperature

100

Distribution of Altimeter Pressure

40000 1 1L
:
30000 -
= -
L
=
m —
o L
@ 20000
& -}1
r_ —
10000 - r]
F“ |
F 1
0 == ﬂr‘!" T T ||>I’t_1_j|
990 1000 1010 1020 1030 1040
Altimeter Pressure
Distribution of Sea Level Pressure
80000 1
60000 1
=
L
=
ik
&
@ 40000 -
= -
[7] B
20000 - r Y
F T =
] I
D —— _‘.rl—l T T [_ [- r_‘r
990 1000 1010 1020 1030 1040

Sea Level Pressure

Distribution of Visibility

300000 -

250000 -

200000 -

150000 A

Frequency

100000 -

50000 -

0 e] = — —i '_JI = Ir_i rl_j |

T T T T
0 2000 4000 8000 2000 10000 12000 14000 16000
Visibility

Distribution of Wind Speed

80000 A

70000 A

60000 -

30000 -

40000 1 -

Frequency

30000 A

20000 -

10000 - ’_‘
Ini
| h-n—,__l
0 2

T
] 1] 30 40
Wind Speed

let

Distribution of Wind_Gust

1.0 A

0.8

Frequency
o
[=4]

I

=
a
1

0.2 1

0.0

led

30 40 50
Wind_Gust

Distribution of Precipitation

60

4.0 1

3.5+

Frequency
= = P J
e n b W
I I 1 I

2
Ln
1

2
o

=

10 15 20
Precipitation

25

1e6 Distribution of Ice_Accretion_3hr

Frequency

8 -

6 -

4 -

7

01—
0] 2 4 6 8 10 12

lce_Accretion_3hr

We assessed the normality of each predictor in our dataset. Visibilitiy, precipitation, and ice
accretion have the highest amounts of skew. However, since we are running a principal

components analysis later, we will not log transform any variables.

Logistic Regression

We want to start fitting our data to a model. We are going to begin with a Logistic
Regression Model.

RECONCILE:

Before running our model, we are going to make sure our data fit all the assumptions of a

generalized linear model.

Validity - We assume the data to be valid. It was collected from the U.S. government's air
traffic statistics and airport weather tracking units. All of the major weather metrics are
included in our dataset, as well as basic information about each flight, which should give us

all the variables of our ideal data.

Representativeness - The data we have is representative, as it records every flight out of Salt
Lake City in the defined period. To check for influential points, we will fit a linear regression

model and check for standard residuals greater than 2.

df.head()

Delayed Temperature Altimeter_Pressure Sea_Level_Pressure Visibility Wind_Speed V

0 1 35.0 1023.03 1024.0 16093.40 11.51
1 1 27.0 1028.78 1031.1 16093.40 0.00
2 0 25.0 1025.40 1027.5 14484.06 9.21
3 0 26.1 1026.08 10154 12874.72 0.00
4 0 27.0 1026.08 10285 16093.40 4.60
4 G >

import statsmodels.api as sm
import statsmodels.formula.api as smf
model formula = ''‘'Delayed ~ Temperature +
Altimeter_Pressure + Sea_Level Pressure +
Visibility + Wind_Speed + Wind_Gust + Precipitation + Ice_Accretion_3hr
logit model = smf.glm(formula=model formula, data=df,
family=sm.families.Binomial()).fit()

influence = logit_model.get_influence()
summary = influence.summary_frame()

Extract standard residuals
standard_resid = summary['standard_resid']

Filter for standard residuals greater than 2
residuals_greater_than_2 = standard_resid[standard_resid > 2]

print("Standard Residuals greater than 2:")
print(residuals_greater_than_2)

Standard Residuals greater than 2:
254960 2.009518

264983 2.009518

290685 2.169431

Name: standard_resid, dtype: float64

print(df.iloc[254960])
print(df.iloc[264983])
print(df.iloc[290685])

Delayed 1.00

Temperature 28.00
Altimeter_Pressure 1034.20
Sea_Level Pressure 1015.40
Visibility 11265.38
Wind_Speed 3.45
Wind_Gust 27.73
Precipitation 0.00
Ice_Accretion_3hr 0.00
Name: 254960, dtype: float64

Delayed 1.00
Temperature 28.00
Altimeter_Pressure 1034.20
Sea_Level Pressure 1015.40
Visibility 11265.38
Wind_Speed 3.45
Wind_Gust 27.73
Precipitation 0.00
Ice_Accretion_3hr 0.00
Name: 264983, dtype: float64

Delayed 1.00
Temperature 35.60
Altimeter_Pressure 1034.20
Sea_Level Pressure 1015.40
Visibility 16093.40
Wind_Speed 0.00
Wind_Gust 27.73
Precipitation 0.00
Ice_Accretion_3hr 0.00

Name: 290685, dtype: float64

Even though there are three values with standard residuals greater than 2, we assume that
these are naturally-occuring influential points and should not be dropped from our dataset.

Independence - We did not observe any clustering within the dataset. Since we removed our
date column, there is no time-series analysis occuring. Each row contains a unique flight, and

we have randomly sampled to get our training and test datasets.

Linearity - To check our linearity, we will create a scatterplot of the log-odds and Delayed.

#Create a scatterplot of log-odds for every variable and Delayed
import seaborn as sns

import matplotlib.pyplot as plt

import statsmodels.api as sm

import numpy as np

cols = 3
rows = (len(quant_vars) // cols) + (len(quant_vars) % cols > 9)

plt.figure(figsize=(cols * 5, rows * 4))

for i, col in enumerate(quant_vars):
plt.subplot(rows, cols, i + 1)

scatter of binary outcome

sns.scatterplot(

x=df[col],
y=df['Delayed'],
alpha=0.35

)

x = df[col]

y = df['Delayed’]

remove missing
mask = ~(x.isna() | y.isna())
x_clean = x[mask]
y_clean = y[mask]

fit logistic model
X = sm.add_constant(x_clean)
model = sm.Logit(y_clean, X).fit(disp=0)

sorted prediction Line

sort_idx = np.argsort(x_clean)

x_sorted = x_clean.iloc[sort_idx]

pred_sorted = model.predict(X.iloc[sort_idx])

plot the smoothed logistic curve
sns.lineplot(

Xx=x_sorted,

y=pred_sorted,

linewidth=2
)

titles & formatting
plt.title(col)
plt.ylim(-0.05, 1.05)

plt.tight_layout()
plt.show()
plt.close('all")

Delayed

Temperature

Sea_Level_Pressure

0.8

0.6 4

]]
@ @
> >
o T
N : N \) " \
0.29 0.2 0.29
0.0 0.0 0.0
20 40 60 80 100 990 1030 1040 990 1000 1010 1020 1030 1040
Temperature Sea_Level_Pressure
Visibility Wind_Gust
1.0 1 essssssss & o [. . . [. . 104 » e 1.04 L .
0.8 0.8 0.8
0.6 - 0.6 - 064
@ @
> >
o B
0.2 0.2 0.2
0.0 { esesessees ¢ o [] . . . [] . . 0.0 ® o o 0.01 . o0 []
T T T T T T T T T T T T T T T T
0 2000 4000 ©000 8000 10000 12000 14000 16000 0 40 20 30 40 50 60
Visibility ‘Wind_Gust
Precipitation
1.04 " we 10 eee o L]
0.8 0.8
06 o 06
1
>
o
0.4 8 0.4
0.2 0.2
0.0 ermmmesyer s® 0.0 ®ee ® .
T T T T T T T T T T
o] 5 10 15 20 25 30 0 10 12

Precipitation

Looking at our scatterplots of delayed and the log-odds of each variable, we can see that

they are all monotone, meaning that these predictors will work well with our logistic

regression model. From this diagnostic, we expect that delays are associated with a higher

level of wind and precipitation, as well as lower levels of pressure and visibility. Temperature

and ice accretion seem to have slight downward trends, but they are less profound than the

other variables.

Multicollinearity - From an inital look at our variables, we assume that altimeter pressure and

sea pressure level are coordinated, as well as wind gust and wind speed. To check for

multicollinearity, we will compute variance inflation factors for all our predictors.

Compute VIF using all quantitative predictors

from statsmodels.stats.outliers_influence import variance_inflation_factor

import statsmodels.api as sm
import pandas as pd

predictors = df[quant_vars]
X = sm.add_constant(predictors)

Calculate VIF for each predictor
vif data = pd.DataFrame()
vif_data["feature"] = X.columns

vif_data["VIF"] = [variance_inflation_factor(X.values, i)

00NV~ WNREO

for i in range(X.shape[1])]

print(vif_data)

feature VIF

const 27732.782996

Temperature 2.366523
Altimeter_Pressure 6.303433
Sea_Level Pressure 7.639463
Visibility 1.326535
Wind_Speed 1.323751
Wind_Gust 1.117202
Precipitation 1.106979
Ice_Accretion_3hr 1.000387

Recompute VIF without Sea Level Pressure

import pandas as pd

from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm

predictors = df[quant_vars].copy()

Drop 'Sea_Level_Pressure' as requested
predictors = predictors.drop('Sea_Level Pressure', axis=1)

X2 = sm.add_constant(predictors)

Calculate VIF for each predictor

vif data_updated = pd.DataFrame()

vif_data_updated["feature"] = X2.columns

vif_data_updated["VIF"] = [variance_inflation_factor(X2.values, i)
for i in range(X2.shape[1])]

print(vif_data_updated)

feature VIF

const 25851.939444

Temperature 1.242151
Altimeter_Pressure 1.246023
Visibility 1.322280
Wind_Speed 1.321059
Wind_Gust 1.116729
Precipitation 1.106883
Ice_Accretion_3hr 1.000386

Our VIF analysis looks good. The only variables that are highly coordinated are altimeter
pressure and sea level pressure, which were giving VIFs of 6.3 and 7.6 respectively. After
removing Sea Level Pressure from the analysis, all our variables are under a VIF of 2. Since
we will be trying out forms of penalized regression that reduce the effect of multicollinearity,
we will keep all our predictors in the dataset.

FIT:

We are going to start fitting the model with some feature engineering to make sure our data
is ready for the model.

from sklearn.model selection import train_test_split

Running code to reduce our dataset down to 5000 to reduce computation time
We want to make sure our distribution is saved so we will use stratify.
_, df_sampled = train_test_split(

df,

test_size=5000,

stratify=df['Delayed’'],

random_state=42

)

print(f"Original DataFrame shape: {df.shape}")
print(f"Sampled DataFrame shape: {df_sampled.shape}")
print("Distribution of Delayed in original df:")
print(df['Delayed'].value_counts(normalize=True))
print("\nDistribution of Delayed in sampled df:")
print(df_sampled[‘Delayed'].value_counts(normalize=True))

Original DataFrame shape: (380735, 9)
Sampled DataFrame shape: (5000, 9)
Distribution of Delayed in original df:
Delayed

0 0.66167

1 0.33833

Name: proportion, dtype: float64

Distribution of Delayed in sampled df:

Delayed
0 0.6616
1 0.3384

Name: proportion, dtype: float64

Separate features (X) and target (y)
X = df_sampled.drop('Delayed’', axis=1)
y = df_sampled['Delayed’]

Splitting the data for hyper parameter tuning
X_train, X_test, y_train, y_test = train_test_split(X,
Y,
test_size=0.3,
stratify=y,
random_state=42)

Combine y train and X_train
flights_train = X_train.copy()
flights_train['Delayed'] = y_train

We have reduced the number of rows in our dataset to account for long computation times.
It keeps the original distribution of our target variable.

from sklearn.model_selection import StratifiedKFold

kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

cutoffs = [0.3, .325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5,
0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75]

y_train_r =y train.values.ravel()

import warnings
warnings.filterwarnings("ignore", message="overflow encountered in exp")
warnings.filterwarnings("ignore", category=Warning)

from sklearn.metrics import accuracy_score

from sklearn.metrics import recall score

from sklearn.linear_model import LogisticRegression
import numpy as np

results = []

running the Loop
for c in cutoffs:
losses = [] # store loss for this cutoff

for train_idx, val_idx in kf.split(X_train, y_train_r):
Split into train/validation
X_tr, X val = X_train.iloc[train_idx], X_train.iloc[val_idx]
y_tr, y val = y train_r[train_idx], y_train_r[val_idx]

Fit Logistic Regression model
model = LogisticRegression(max_iter=1000).fit(X_tr, y_tr)

Predict probabilities for the positive class
y_prob = model.predict_proba(X val)[:, 1]

Apply cutoff
y_pred = (y_prob >= c).astype(int)

Confusion matrix
conf_matrix = confusion_matrix(y_val, y pred)

Extract FP and FN
false positives = conf_matrix[0, 1]
false negatives = conf_matrix[1, 9]

Compute Lloss
loss = flight_loss(false_positives, false_negatives)
losses.append(loss)

store results for this cutoff
results.append({

‘cutoff': c,

'loss': np.mean(losses),

1)

print clean output

for result in results:
print(f"Cutoff: {result['cutoff']}, Flight Loss: {result['loss']}")

Cutoff: 0.3, Flight Loss: 206300000.0
Cutoff: ©.325, Flight Loss: 170400000.0
Cutoff: ©.35, Flight Loss: 139900000.0
Cutoff: ©.375, Flight Loss: 129000000.60
Cutoff: 0.4, Flight Loss: 123000000.0
Cutoff: 0.425, Flight Loss: 120400000.0
Cutoff: 0.45, Flight Loss: 119400000.0
Cutoff: 0.475, Flight Loss: 119100000.0
Cutoff: 0.5, Flight Loss: 118300000.0
Cutoff: ©.525, Flight Loss: 118400000.0
Cutoff: ©.55, Flight Loss: 118800000.0
Cutoff: ©.575, Flight Loss: 118100000.0
Cutoff: 0.6, Flight Loss: 118200000.0
Cutoff: 0.625, Flight Loss: 118200000.0
Cutoff: 0.65, Flight Loss: 118100000.0
Cutoff: 0.675, Flight Loss: 118300000.0
Cutoff: 0.7, Flight Loss: 118300000.0
Cutoff: ©.725, Flight Loss: 118400000.0
Cutoff: ©.75, Flight Loss: 118400000.0

The code above runs a loop for each cutoff value we would like to test. It takes each cutoff
value and evaluates them using a model to determine the best cutoff value.

Find the best cutoff based on accuracy
cutoff = None
min_loss = 10000000000000000000000000000000

for result in results:
if result['loss'] < min_loss:
min_loss = result['loss']
cutoff = result['cutoff']

print(f"Best Cutoff Value: {cutoff}")
print(f"Minimum lost for Best Cutoff: ${min_loss:,.4f}")
LogRloss = min_loss

Best Cutoff Value: 0.575
Minimum lost for Best Cutoff: $118,100,000.0000

EVALUATE:

print(f'Logistic Regression Loss: ${LogRloss:,.2f}")
Logistic Regression Loss: $118,100,000.00

To evaluate our models, we will be using our loss function. Using our loss function allows us
to capture the fact that the cost of a false negative, sending a plane that should have been
delayed, is way higher than the cost of a false positive, delaying a flight that didn't need to
be delayed.

Ridge Regression

The first penalized regression function we are going to run is ridge regression.

RECONCILE:

Since Ridge Regression is just a specialized form of Generalized Linear Regression, all of our

assumptions are met.

FIT:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

from sklearn.metrics import confusion_matrix
from sklearn.metrics import make_scorer

Custom scorer wrapper
def flight_loss_scorer(y_true, y_pred):

fp
fn

cm = confusion_matrix(y_true, y_pred)
cm[O, 1]

cm[1, 9]

return flight loss(fp, fn)

Tell sklearn this is a MINIMIZATION metric

flight_scorer

from
\'

from
from
from
from
from

sklearn.

sklearn.
sklearn.
sklearn.
sklearn.
sklearn.

= make_scorer(flight_loss_scorer, greater_is_better=False)

model selection import train_test split, StratifiedKFold, GridSearchC

pipeline import Pipeline

preprocessing import StandardScaler

metrics import accuracy_score, roc_auc_score
utils import resample

linear_model import LogisticRegression

Create a pipeline

ridge_pipe =
('feature_engineering', StandardScaler()),
('classification', LogisticRegression(penalty = '12"))

D

Pipeline([

Create a grid using a log scale (inverse of regularization strength)

hyper_grid = {'classification__C":

np.logspace(-3, 3, 30)}

Use the grid to tune hyperparameters via cross-validation
kfold_cv = StratifiedKFold(n_splits = 5)

= GridSearchCV(

ridge_pipe, hyper_grid, scoring = flight_scorer,

tune

cv = kfold_cv, n_jobs = 1, refit = True, verbose=0

)
tune.fit(X_train, y_train.to_numpy().ravel())

y_prob = tune.best_estimator_.predict_proba(X_test)[:, 1]
y_pred (y_prob >= cutoff).astype(int)

Compute confusion matrix

cm = confusion_matrix(y_test, y_pred)
fp = cm[0, 1]
fn = cm[1, 9]

Ridgeloss = flight loss(fp, fn)

best_C = tune.best_params_['classification_ C"']

EVALUATE:

print(f'Logistic Regression Loss: ${LogRloss:,.2f}")
print(f'Ridge Loss: ${Ridgeloss:,.2f}")

Logistic Regression Loss: $118,100,000.00
Ridge Loss: $254,500,000.00

Ridge Regression did slightly worse in the recall function. We can expect this from the
penalized regression models as they tend to favor the larger class, and we are predicting on
the smaller class in our distribution.

LASSO Regression

We are now going to run LASSO as our next form of penalized regression.

RECONCILE:

LASSO regression also uses the base of generalized linear regression without any extra
assumptions, so all of our assumption checking from generalized linear regression still apply.

FIT:

Create a lasso pipeline
lasso_pipe = Pipeline([
('feature_engineering', StandardScaler()),
('classification', LogisticRegression(penalty = '11', solver = 'liblinear'))

D

Create a grid using a log scale (inverse of regularization strength)
hyper_grid = {'classification__11 ratio': [©0.1, ©.25, 0.5, 0.75, 0.9]}

Use the grid to tune hyperparameters via cross-validation
kfold_cv = StratifiedKFold(n_splits = 5)
tune = GridSearchCV(
lasso_pipe, hyper_grid, scoring = flight_scorer,
cv = kfold_cv, n_jobs = 1, refit = True, verbose=0
)
tune.fit(X_train, y_train.to_numpy().ravel())

Extract the best hyperparameter and CV

best_11 = tune.best_params_['classification__ 11 ratio']
y_pred = tune.best_estimator_.predict_proba(X_test)[:, 1]
y_pred = (y_pred >= cutoff).astype(int)

Compute confusion matrix

cm = confusion_matrix(y_test, y_pred)
fp = cm[0, 1]
fn = cm[1, 9]

lassoloss = flight_loss(fp, fn)

EVALUATE:

print(f'Logistic Regression Loss: ${LogRloss:,.2f}")
print(f'Ridge Loss: ${Ridgeloss:,.2f}")
print(f'LASSO Recall: ${lassoloss:,.2f}")

Logistic Regression Loss: $118,100,000.00
Ridge Loss: $254,500,000.00
LASSO Recall: $256,500,000.00

LASSO Regression did slightly worse than our previous penalized regression format.It

struggled with the fact that penalized regression favors the biggest class in the distribution.

Elastic Net Regression

Our final penalized regression we are going to run is an elastic net regression.

RECONCILE:

Once again, Elastic Net is just a specialized form of Generalized Linear Regression, therefore

all of our assumptions are still met.

FIT:

Create an elastic net pipeline
elastic_pipe = Pipeline([
('feature_engineering', StandardScaler()),

('classification', LogisticRegression(
penalty = 'elasticnet’,
solver = 'saga', max_iter=25, random_state=42
)
D

Create a grid that 1includes both hyperparameters
hyper_grid = {
‘classification__ C': np.logspace(-3, 3, 19),
‘classification__11 ratio': [0.1, ©.25, 0.5, 0.75, 0.9]
}

Use the grid to tune both hyperparameters via cross-validation
tune = GridSearchCV(
elastic_pipe, hyper_grid, scoring = 'recall’,
cv = kfold_cv, n_jobs = 1, refit = True, verbose=0
)
tune.fit(X_train, y_train.to_numpy().ravel())

Extract the best hyperparameters and CV recall

best_C = tune.best_params_['classification_ C']

best 11 = tune.best params ['classification_ 11 ratio']
y_pred = tune.best_estimator_.predict_proba(X_test)[:, 1]
y_pred = (y_pred >= cutoff).astype(int)

Compute confusion matrix

cm = confusion_matrix(y_test, y_pred)
fp = cm[0, 1]
fn = cm[1, 9]

Elasticloss = flight_loss(fp, fn)

EVALUATE:

print(f'Logistic Regression Loss: ${LogRloss:,.2f}")
print(f'Ridge Loss: ${Ridgeloss:,.2f}")
print(f'LASSO Loss: ${lassoloss:,.2f}")
print(f'ElasticNet Loss: ${Elasticloss:,.2f}")

Logistic Regression Loss: $118,100,000.00
Ridge Loss: $254,500,000.00
LASSO Loss: $256,500,000.00
ElasticNet Loss: $254,500,000.00
The Elastic Net model we ran is tied with our ridge model for least loss out of our penalized

models. We have two more models to run before we can choose the best model.

Principal Component Regression

We have tested a bunch of penalized regression functions, but we should also run a principal
component analysis and apply it to our logit model.

RECONCILE:

from sklearn.decomposition import PCA

Create a pipeline
pcr_pipe = Pipeline([
('scaler', StandardScaler()),
('pca', PCA(random_state=42)),
('classify', LogisticRegression(fit_intercept=True,
penalty=None, class_weight="balanced')),
1
Create a hyperparameter grid for number of PCA components
hyper_grid = {'pca__n_components': np.arange(1, 8, 1)}
Use the grid to tune hyperparameters via cross-validation
kfold cv = StratifiedKFold(n_splits=5)
tune = GridSearchCV(
pcr_pipe, hyper_grid, scoring= flight_scorer,
cv=kfold_cv, n_jobs=1, refit=True, verbose=0
)
tune.fit(X_train, y_train.to_numpy().ravel())
Extract the best hyperparameter and CV accuracy
best_n_components = tune.best _params_['pca__n_components']
best_cv_score = tune.best_score_
best_cv_score = best_cv_score * -1

print(
f'Best K: {best_n_components}’,
f'Best CV Recall: ${best_cv_score:,.2f}",
sep="\n'

)

Best K: 3
Best CV Recall: $154,500,000.00

5 fold cross validation says the optimal amount of principal componenents is 3. However,
this doesn't account for uncertaintity, so we will graph the amount and try to find a lower

amount of columns using one standard error to find other viable options.

def lower_bound(cv_results):
best_score_idx = np.argmax(cv_results['mean_test _score'])
return (
cv_results['mean_test _score'][best_score_idx]
- (cv_results['std_test_score'][best_score_idx] / np.sqrt(5)) # 5-fold CV
)
def best_low_complexity(cv_results):
threshold = lower_bound(cv_results)
candidate_idx = np.flatnonzero(cv_results['mean_test score'] >= threshold)
best_idx = candidate_idx[
cv_results['param_reduce_dim__n_components'][candidate_idx].argmin()

]

return best_idx

Extracted cross-validation results

Out[488..

Accuracy

n_components = tune.cv_results_['param_pca__n_components']
mean_test_score = tune.cv_results_['mean_test_score']

Visualize cross-validated results

plt.figure(figsize = (12, 5))

plt.bar(n_components,
mean_test_score,

width = 1,
color = 'grey’,
edgecolor = 'black'

Add lines for best score and one-standard-error rule
lower = lower_bound(tune.cv_results)
plt.axhline(np.max(mean_test_score),

linestyle = '-",

color = 'blue',

label = 'Best Score'
)
plt.axhline(lower,

linestyle = '--",

color = 'red',

label = 'Best Score - 1 SE'
)

Add title, Llabels, and legend

plt.title('Balancing Model Complexity and Cross-Validated Accuracy')
plt.xlabel('Number of PCA Components Used')

plt.ylabel('Accuracy")

plt.xticks(n_components.tolist())

plt.legend(loc = 'lower right")

<matplotlib.legend.Legend at ©x2079al12e910>

1e8 Balancing Model Complexity and Cross-Validated Accuracy

0.0

—0.2

—0.4

—0.6

—0.8

—1.0 A

—1.2

-1.4 1

epp—— == [y e p————————y—y—y—y—y LT ———Best-5core
—=—- BestScore-1S5E

—1.6

1 2 3 4 5 6 7
Number of PCA Components Used

We can see that two principal components is a possible value within the 1 error rule, so we
will run the model using 2 principal components.

FIT:

Update the pipeline with n_components = 2
pcr_pipe = Pipeline([
('scaler', StandardScaler()),
("pca', PCA(n_components = 2, random_state = 42)),
('classify', LogisticRegression(fit_intercept = True, penalty = None)),
D
Specify a new estimator that allows for cutoff tuning
from sklearn.base import BaseEstimator, ClassifierMixin

class CutoffClassifier(BaseEstimator, ClassifierMixin):
def __init_ (self, pipeline, cutoff = 0.5):
self.pipeline = pipeline
self.cutoff = cutoff

def fit(self, X_train, y train):
self.pipeline.fit(X_train, y_ train)
return self

def predict_proba(self, X _train):
return self.pipeline.predict_proba(X_train)

def predict(self, X train):
y_pred_proba = self.predict_proba(X_train)[:, 1]
return (y_pred_proba >= self.cutoff).astype(int)

We are going to rerun our model diagnostics to see if our principal components still fit our

model assumptions for logistic regression.

import matplotlib.pyplot as plt

import statsmodels.api as sm

import statsmodels.formula.api as smf

import pandas as pd

import numpy as np

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression

pcr_pipe = Pipeline([
('scaler', StandardScaler()),
("pca', PCA(n_components=2, random_state=42)),
('classify', LogisticRegression(fit_intercept=True, penalty=None)),

D

pcr_pipe.fit(X_train, y train)

X_scaled = pcr_pipe.named_steps['scaler'].transform(X_train)
X_pca = pcr_pipe.named_steps['pca’].transform(X_scaled)

pc_df = pd.DataFrame(X_pca, columns=["PC1", "PC2"])
pc_df["Delayed"] = y_train.values

--- PC1 Distribution ---
plt.figure()

pc_df["PC1"].hist()
plt.title("Distribution of PC1")
plt.xlabel("PC1")
plt.ylabel("Frequency")
plt.show()

--- PC2 Distribution ---
plt.figure()

pc_df["PC2"].hist()
plt.title("Distribution of PC2")
plt.xlabel("PC2")
plt.ylabel("Frequency")
plt.show()

Distribution of PC1

1000

800 A

600 -

Frequency

400

200 +

Distribution of PC2

2000

1750 A

1500 ~

1250 ~

Frequency
=
(=
(=]
=]
i

730
500
250
D T T I I
=150 =125 =100 =7.5 =5.0 —=2.5 0.0
PC2

import statsmodels.api as sm

import statsmodels.formula.api as smf

import pandas as pd

import numpy as np

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression

pcr_pipe = Pipeline([
('scaler', StandardScaler()),
('pca', PCA(n_components=2, random_state=42)),

('classify', LogisticRegression(fit_intercept=True, penalty=None)),

D

pcr_pipe.fit(X_train, y_train)

X_scaled = pcr_pipe.named_steps['scaler'].transform(X_train)
X_pca = pcr_pipe.named_steps['pca’].transform(X_scaled)

pc_df = pd.DataFrame(X_pca, columns=["PC1", "PC2"])
pc_df["Delayed"] = y_train.values

2.5

model formula = "Delayed ~ PC1 + PC2"

logit_model = smf.glm(
formula=model formula,
data=pc_df,
family=sm.families.Binomial()

). fit()

influence = logit_model.get_influence()
summary = influence.summary_frame()

Standardized residuals
standard_resid = summary['standard_resid"]

Residuals greater than 2
resid_gt 2 = standard_resid[np.abs(standard_resid) > 2]

print("\nStandardized Residuals | > 2 |")
print(resid_gt 2)

Standardized Residuals | > 2 |
Series([], Name: standard_resid, dtype: float64)

import seaborn as sns

import matplotlib.pyplot as plt

import statsmodels.api as sm

import numpy as np

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression

---- Fit PCR pipeline ----
pcr_pipe = Pipeline([
('scaler', StandardScaler()),
("pca', PCA(n_components=2, random_state=42)),
('classify', LogisticRegression(fit_intercept=True, penalty=None)),

D

pcr_pipe.fit(X_train, y train)

Transform X into PC space

X_scaled = pcr_pipe.named_steps['scaler'].transform(X_train)
X_pca = pcr_pipe.named_steps['pca’].transform(X_scaled)

Put in dataframe for easier plotting

pc_df = pd.DataFrame(X_pca, columns=["PC1", "PC2"])
pc_df["Delayed"] = y_train.values

cols = 2

Delayed

rows = 1
plt.figure(figsize=(10,4))

for i, col in enumerate(["PC1", "PC2"]):
plt.subplot(rows, cols, i+1)

x = pc_df[col]
y = pc_df["Delayed"]
Scatter

sns.scatterplot(x=x, y=y, alpha=0.35)

Remove missing
mask = ~(x.isna() | y.isna())
x_clean = x[mask]
y_clean = y[mask]

Fit Logistic model
X_sm = sm.add_constant(x_clean)
model = sm.Logit(y_clean, X _sm).fit(disp=0)

Sorted Line

sort_idx = np.argsort(x_clean)

x_sorted = x_clean.iloc[sort_idx]

pred_sorted = model.predict(X_sm.iloc[sort_idx])

sns.lineplot(x=x_sorted, y=pred_sorted, linewidth=2)

plt.title(col)
plt.ylim(-0.05, 1.05)

plt.tight_layout()

plt.show()
PC1 PC2
1.0 4 LA 1.0 A L WD T8 FEN D DY
0.8 0.8
0.6 < 0.6
@
>
o
0.4 8 0.4
0.2 + 0.2
0.0 4 i ane 0.0 4 o1] 0 RO I O 0D ()
T T T T T T T T T T T T T T
—6 —4 -2 0 2 4 -15.0 -12.5 -10.0 -7.5 -50 -2.5 0.0 2.5
PC1 PC2

The data remains valid and independent. Since principal components are orthogonal in
hyperspace, there are no issues with multicollinearity. Our representativeness check shows
no values with residuals greater than 2, meaning that our data is representative. We also see
that the relationship of our principal components is linear and negative, so the assumption
of linearity still holds. Our first principal component is normally distributed, and while our

second principal component has some skew, we did not choose to transform it. All of our
model assumptions are checked, so we will move on with the model.

Wrap the new estimator around the pipeline
cutoff_pipe = CutoffClassifier(pipeline = pcr_pipe)
Create a hyperparameter grid for classification cutoff
hyper_grid = {'cutoff': np.linspace(©.3, 0.9, 81)}
Use the grid to tune hyperparameters via cross-validation
kfold cv = StratifiedKFold(n_splits = 5)
tune = GridSearchCV(
cutoff_pipe, hyper_grid, scoring = flight_scorer,
cv = kfold_cv, n_jobs = 1, refit = True, verbose=0
)
tune.fit(X_train, y_train.to_numpy().ravel())
Extract the best hyperparameter and CV
PCRcutoff = tune.best_params_['cutoff']
best_cv_loss = tune.best_score_
PCRloss = best_cv_loss * -1

print(
f'Best Cutoff: {PCRcutoff:.3f}',
f'Best CV Flight Loss: {PCRloss:.of}",
sep="\n'

)

Best Cutoff: 0.480
Best CV Flight Loss: 117500000

EVALUATE:

print(f'Logistic Regression Loss: ${LogRloss:,.2f}")
print(f'Ridge Loss: ${Ridgeloss:,.2f}")
print(f'LASSO Loss: ${lassoloss:,.2f}")
print(f'ElasticNet Loss: ${Elasticloss:,.2f}")
print(f'PCR Loss: ${PCRloss:,.2f}")

Logistic Regression Loss: $118,100,000.00
Ridge Loss: $254,500,000.00
LASSO Loss: $256,500,000.00
ElasticNet Loss: $254,500,000.00
PCR Loss: $117,500,000.00
Our principal component regression outperformed our other models and did slightly better

than our Logistic Regression model, so we chose it as our final model.

Interactions

Our current data set doesn't account for any interactions among the independent variables,

so with this next model, we are going to implement an interaction.

RECONCILE:

We are going to fit our best model, PCR, with an interaction included to see if that improves

our model.

FIT:

pcr_pipe = Pipeline([
('scaler', StandardScaler()),
('pca', PCA(n_components = 2, random_state = 42)),
('classify', LogisticRegression(fit_intercept = True, penalty = None)),

D

Wrap the new estimator around the pipeline
cutoff_pipe = CutoffClassifier(pipeline = pcr_pipe)
Create a hyperparameter grid for classification cutoff
hyper_grid = {'cutoff': np.linspace(©.3, 0.9, 81)}
Use the grid to tune hyperparameters via cross-validation
kfold cv = StratifiedKFold(n_splits = 5)
tune = GridSearchCV(
cutoff_pipe, hyper_grid, scoring = flight_scorer,
cv = kfold_cv, n_jobs = 1, refit = True, verbose=0

)
tune.fit(X_train, y_train.to_numpy().ravel())

Extract the best hyperparameter and CV
PCRIcutoff = tune.best_params_['cutoff']
best_cv_loss = tune.best_score_

PCRIloss = best_cv_loss * -1

print(
f'Best Cutoff: {PCRIcutoff:.3f}',
f'Best CV Flight Loss: {PCRIloss:.of}',
sep="\n"'

)

Best Cutoff: 0.480
Best CV Flight Loss: 117500000

EVALUATE:

print(f'Logistic Regression Loss: ${LogRloss:,.2f}")
print(f'Ridge Loss: ${Ridgeloss:,.2f}")

print(f'LASSO Loss: ${lassoloss:,.2f}")
print(f'ElasticNet Loss: ${Elasticloss:,.2f}")
print(f'PCR Loss: ${PCRloss:,.2f}")

print(f'PCR with Interaction Loss: ${PCRIloss:,.2f}")

Logistic Regression Loss: $118,100,000.00
Ridge Loss: $254,500,000.00

LASSO Loss: $256,500,000.00

ElasticNet Loss: $254,500,000.00

PCR Loss: $117,500,000.00

PCR with Interaction Loss: $117,500,000.00

It seems like our best model was our original PCR model. We will run that on our test data.

PREDICT

FIT:

fixed_cutoff = 0.48

Create a model with the fixed cutoff

test_model = CutoffClassifier(
pipeline=pcr_pipe,
cutoff=fixed_cutoff

)

Fit model on training data
test_model.fit(X_train, y_train.to_numpy().ravel())

Predict on test set
y_pred_test = test_model.predict(X_test)

EVALUATE:

Compute flight Lloss

cm = confusion_matrix(y_test, y_pred_test)
fp = cm[0, 1]
fn = cm[1, 9]

test_loss = flight_loss(fp, fn)

print(f"\nTest Flight Loss using cutoff {fixed_cutoff}: ${test_loss:,.2f}")

Test Flight Loss using cutoff 0.48: $252,500,000.00

Running code to apply our Lloss function on a baseline assumption,
which would be assuming every flight as a non-delayed flight.

baseline_loss_value = flight loss(
false_positives = 0, #we have no false positives,
as we are assuming every flight to not have a delay
false_negatives = (len(df_sampled) * .33) #33% of our data is delays,
meaning 33% will be false negatives

print(f"Baseline Flight Loss: ${baseline_loss_value:,.2f}")

Baseline Flight Loss: $825,000,000.00

Saving = baseline_loss_value - test_loss
print(f"Saving: ${Saving:,.2f}")

Saving: $572,500,000.00
Using our model we could save Salt Lake City Airport $572,500,000.

Now we want to output the interval estimates for our principal components, but first, we

need to name them.

pca = test_model.pipeline.named_steps['pca’]

pca_loadings = (
pl.DataFrame(pca.components_).transpose()
.rename({'column_©': 'PC1', 'column_1': 'PC2'})
.with_columns(pl.Series('predictors', X_train.columns.tolist()))

Sort the loadings for PC1
pca_loadings.select(['predictors', 'PC1']).sort('PCl', descending =
True) .head(5)

shape: (5, 2)
predictors PC1
str fe4
"Sea_Level_Pressure” 0.612449
"Altimeter_Pressure" 0.567805
"Visibility" 0.019215
"lce_Accretion_3hr" -0.037231

"Precipitation" -0.08974

Based on these loadings, we want to call PC1 "Atmospheric Pressure"

Sort the loadings for PC2
pca_loadings.select(['predictors', 'PC2']).sort('PC2', descending =
True).head(5)

shape: (5, 2)
predictors PC2
str fo4
"Visibility" 0.658023
"Temperature" 0.472904
"Altimeter_Pressure" 0.165158
"Wind_Speed" -0.037792

"Sea_Level_Pressure" -0.056655

Based on these loadings, we want to call PC2 "Visibility & Temperature”

pca_loadings = (
pl.DataFrame(pca.components_).transpose()
.rename({'column_0': 'Atmospheric Pressure’,
‘column_1': 'Visibility & Temperature'})
.with_columns(pl.Series('predictors', X_train.columns.tolist()))

Extract point estimates from refit best_estimator
pcr_final = test_model.pipeline.named_steps['classify']
pcr_intercept = pcr_final.intercept_.ravel()

pcr_slopes = pcr_final.coef_.ravel()

pcr_point_est = np.concatenate([pcr_intercept, pcr_slopes])

Bootstrap confidence intervals
n_samples = 100
pcr_boot_est = np.empty((n_samples, len(pcr_point_est)))
for b in range(n_samples):
Resample data with replacement
X_b, y_b = resample(X_train, y_train, replace = True, random_state = 42 + b)
Extract and save point estimates for PCR
boot_pcr_pipe = test_model.pipeline
Use the pipeline from the fitted test_model
boot_pcr_pipe.fit(X_b, y_b.to_numpy().ravel())
pcr_b = boot_pcr_pipe.named_steps['classify']
pcr_intercept_b = pcr_b.intercept_.ravel()
pcr_slopes_b = pcr_b.coef_.ravel()
pcr_point_est b = np.concatenate([pcr_intercept b, pcr_slopes b])
pcr_boot_est[b, :] = pcr_point_est_b

pcr_int_est = pl.DataFrame({
'predictors': ['Intercept'] + pca_loadings.columns[:2],
'point_est': pcr_point_est,
'ci_lower': np.percentile(pcr_boot_est, 2.5, axis=0),
'ci_upper': np.percentile(pcr_boot_est, 97.5, axis=0)
}).filter(pl.col('predictors') != "Intercept')

Plot the confidence intervals
plt.figure(figsize=(4, 4))

plt.errorbar(
pcr_int_est['point_est'],
pcr_int_est['predictors'],
xerr=[
pcr_int_est['point_est'] - pcr_int_est['ci_lower'],
pcr_int_est['ci_upper'] - pcr_int_est['point_est']

1,
fmt="0",
capsize=5,
label="Estimates"
)
plt.axvline(@, color="red', linestyle='--', label="y=0")

<matplotlib.lines.Line2D at ©x207883b3b10>

Visibility & Temperature - I ® I

Atmospheric Pressure 4 | ® i

T T T
—=0.15 =0.10 =0.05 0.00

In the above chart, both of our principal components are negatively correlated with delaying
a flight.

print(pcr_int_est)

shape: (2, 4)

| T | | |
| predictors i point_est i ci_lower i ci_upper |
| --- R R R |
I I I
| str | fe4 | fe4 | fe4 |
L 1 1 1 |
Atmospheric Pressure	-0.129758	-0.179708	-0.090525
visibility & Temperature	-0.08437	-0.136874	-0.026284

Interpretation

We are 95% confident that the true effect of a one unit increase in Visibility & Temperature
on the log-odds of the outcome lies within -0.179708 and -0.090525. This component has
statistical significance.

We are 95% confident that the true effect of a one unit increase in Visibility & Temperature
on the log-odds of the outcome lies within -0.136874 and -0.026284. This component has
statistical significance.

